在曲线上找到最佳权衡点

假设我有一些数据,我想在其上拟合一个参数化模型。我的目标是为此模型参数找到最佳值。 我正在使用AIC / BIC / MDL类型的标准进行模型选择,这种标准可以奖励低误差的模型,但也会对高复杂度的模型进行惩罚(我们正在寻找这个数据的最简单但最有说服力的解释,可以这么说,奥卡姆的剃刀)。 按照上面的说明,这是我得到的三种不同标准的例子(两个要最小化,一个要最大化): 在视觉上你可以很容易地看到肘部形状,你会在该区域的某处选择一个参数值。 问题是我正在为大量实验做这件事,我需要一种方法来找到这个值而无需干预。 我的第一个直觉是尝试从角落以45度角绘制一条直线并继续移动它直到它与曲线相交,但这说起来容易做起来:)如果曲线有些偏斜,它也会错过感兴趣的区域。 关于如何实现这个或更好的想法的任何想法? 以下是重现上述一个图表所需的样本:
curve = [8.4663 8.3457 5.4507 5.3275 4.8305 4.7895 4.6889 4.6833 4.6819 4.6542 4.6501 4.6287 4.6162 4.585 4.5535 4.5134 4.474 4.4089 4.3797 4.3494 4.3268 4.3218 4.3206 4.3206 4.3203 4.2975 4.2864 4.2821 4.2544 4.2288 4.2281 4.2265 4.2226 4.2206 4.2146 4.2144 4.2114 4.1923 4.19 4.1894 4.1785 4.178 4.1694 4.1694 4.1694 4.1556 4.1498 4.1498 4.1357 4.1222 4.1222 4.1217 4.1192 4.1178 4.1139 4.1135 4.1125 4.1035 4.1025 4.1023 4.0971 4.0969 4.0915 4.0915 4.0914 4.0836 4.0804 4.0803 4.0722 4.065 4.065 4.0649 4.0644 4.0637 4.0616 4.0616 4.061 4.0572 4.0563 4.056 4.0545 4.0545 4.0522 4.0519 4.0514 4.0484 4.0467 4.0463 4.0422 4.0392 4.0388 4.0385 4.0385 4.0383 4.038 4.0379 4.0375 4.0364 4.0353 4.0344];
plot(1:100, curve)
编辑 我接受了乔纳斯给出的解决方案。基本上,对于曲线上的每个点
p
,我们找到最大距离为
d
的那个由下式给出:     
已邀请:
找到弯头的一种快速方法是从曲线的第一个点到最后一个点绘制一条线,然后找到距离该线最远的数据点。 这当然在某种程度上取决于你在线的平坦部分中的点数,但如果你每次测试相同数量的参数,它应该相当合适。
curve = [8.4663 8.3457 5.4507 5.3275 4.8305 4.7895 4.6889 4.6833 4.6819 4.6542 4.6501 4.6287 4.6162 4.585 4.5535 4.5134 4.474 4.4089 4.3797 4.3494 4.3268 4.3218 4.3206 4.3206 4.3203 4.2975 4.2864 4.2821 4.2544 4.2288 4.2281 4.2265 4.2226 4.2206 4.2146 4.2144 4.2114 4.1923 4.19 4.1894 4.1785 4.178 4.1694 4.1694 4.1694 4.1556 4.1498 4.1498 4.1357 4.1222 4.1222 4.1217 4.1192 4.1178 4.1139 4.1135 4.1125 4.1035 4.1025 4.1023 4.0971 4.0969 4.0915 4.0915 4.0914 4.0836 4.0804 4.0803 4.0722 4.065 4.065 4.0649 4.0644 4.0637 4.0616 4.0616 4.061 4.0572 4.0563 4.056 4.0545 4.0545 4.0522 4.0519 4.0514 4.0484 4.0467 4.0463 4.0422 4.0392 4.0388 4.0385 4.0385 4.0383 4.038 4.0379 4.0375 4.0364 4.0353 4.0344];

%# get coordinates of all the points
nPoints = length(curve);
allCoord = [1:nPoints;curve]';              %'# SO formatting

%# pull out first point
firstPoint = allCoord(1,:);

%# get vector between first and last point - this is the line
lineVec = allCoord(end,:) - firstPoint;

%# normalize the line vector
lineVecN = lineVec / sqrt(sum(lineVec.^2));

%# find the distance from each point to the line:
%# vector between all points and first point
vecFromFirst = bsxfun(@minus, allCoord, firstPoint);

%# To calculate the distance to the line, we split vecFromFirst into two 
%# components, one that is parallel to the line and one that is perpendicular 
%# Then, we take the norm of the part that is perpendicular to the line and 
%# get the distance.
%# We find the vector parallel to the line by projecting vecFromFirst onto 
%# the line. The perpendicular vector is vecFromFirst - vecFromFirstParallel
%# We project vecFromFirst by taking the scalar product of the vector with 
%# the unit vector that points in the direction of the line (this gives us 
%# the length of the projection of vecFromFirst onto the line). If we 
%# multiply the scalar product by the unit vector, we have vecFromFirstParallel
scalarProduct = dot(vecFromFirst, repmat(lineVecN,nPoints,1), 2);
vecFromFirstParallel = scalarProduct * lineVecN;
vecToLine = vecFromFirst - vecFromFirstParallel;

%# distance to line is the norm of vecToLine
distToLine = sqrt(sum(vecToLine.^2,2));

%# plot the distance to the line
figure('Name','distance from curve to line'), plot(distToLine)

%# now all you need is to find the maximum
[maxDist,idxOfBestPoint] = max(distToLine);

%# plot
figure, plot(curve)
hold on
plot(allCoord(idxOfBestPoint,1), allCoord(idxOfBestPoint,2), 'or')
    
如果有人需要上面Jonas发布的Matlab代码的Python版本。
import numpy as np
curve = [8.4663, 8.3457, 5.4507, 5.3275, 4.8305, 4.7895, 4.6889, 4.6833, 4.6819, 4.6542, 4.6501, 4.6287, 4.6162, 4.585, 4.5535, 4.5134, 4.474, 4.4089, 4.3797, 4.3494, 4.3268, 4.3218, 4.3206, 4.3206, 4.3203, 4.2975, 4.2864, 4.2821, 4.2544, 4.2288, 4.2281, 4.2265, 4.2226, 4.2206, 4.2146, 4.2144, 4.2114, 4.1923, 4.19, 4.1894, 4.1785, 4.178, 4.1694, 4.1694, 4.1694, 4.1556, 4.1498, 4.1498, 4.1357, 4.1222, 4.1222, 4.1217, 4.1192, 4.1178, 4.1139, 4.1135, 4.1125, 4.1035, 4.1025, 4.1023, 4.0971, 4.0969, 4.0915, 4.0915, 4.0914, 4.0836, 4.0804, 4.0803, 4.0722, 4.065, 4.065, 4.0649, 4.0644, 4.0637, 4.0616, 4.0616, 4.061, 4.0572, 4.0563, 4.056, 4.0545, 4.0545, 4.0522, 4.0519, 4.0514, 4.0484, 4.0467, 4.0463, 4.0422, 4.0392, 4.0388, 4.0385, 4.0385, 4.0383, 4.038, 4.0379, 4.0375, 4.0364, 4.0353, 4.0344]
nPoints = len(curve)
allCoord = np.vstack((range(nPoints), curve)).T
np.array([range(nPoints), curve])
firstPoint = allCoord[0]
lineVec = allCoord[-1] - allCoord[0]
lineVecNorm = lineVec / np.sqrt(np.sum(lineVec**2))
vecFromFirst = allCoord - firstPoint
scalarProduct = np.sum(vecFromFirst * np.matlib.repmat(lineVecNorm, nPoints, 1), axis=1)
vecFromFirstParallel = np.outer(scalarProduct, lineVecNorm)
vecToLine = vecFromFirst - vecFromFirstParallel
distToLine = np.sqrt(np.sum(vecToLine ** 2, axis=1))
idxOfBestPoint = np.argmax(distToLine)
    
信息理论模型选择的要点是它已经考虑了参数的数量。因此,没有必要找到肘部,只需要找到最小的肘部。 找到曲线的肘部仅在使用拟合时才有意义。即便如此,您选择弯头的方法在某种意义上也会对参数数量造成损失。要选择弯头,您需要最小化从原点到曲线的距离。距离计算中两个维度的相对权重将产生固有的惩罚项。信息理论标准基于参数的数量和用于估计模型的数据样本的数量来设置该度量。 底线建议:使用BIC并采取最低限度。     
首先,快速计算回顾:每个图的一阶导数
f'
表示绘制的函数
f
正在变化的速率。二阶导数
f''
表示
f'
变化的速率。如果
f''
很小,则意味着图表以适度的速度改变方向。但如果
f''
很大,则意味着图表正在迅速改变方向。 您希望在图的域中隔离
f''
最大的点。这些将是您的最佳模型选择的候选点。你选择哪一点必须取决于你,因为你还没有明确指出你对健身与复杂性的重视程度。     
因此,解决这个问题的一种方法是两条适合肘部L的两条线。但由于曲线的一部分只有几个点(正如我在评论中提到的那样),所以线条拟合会受到影响,除非您检测到哪些点间隔并在它们之间进行插值以制作更均匀的系列,然后使用RANSAC找到两条适合L的线 - 有点复杂但并非不可能。 所以这里有一个更简单的解决方案 - 由于MATLAB的缩放(显然),你提出的图表看起来就像它们一样。所以我所做的就是使用比例信息最小化从“原点”到您的点的距离。 请注意:原点评估可以大大改善,但我会留给你。 这是代码:
%% Order
curve = [8.4663 8.3457 5.4507 5.3275 4.8305 4.7895 4.6889 4.6833 4.6819 4.6542 4.6501 4.6287 4.6162 4.585 4.5535 4.5134 4.474 4.4089 4.3797 4.3494 4.3268 4.3218 4.3206 4.3206 4.3203 4.2975 4.2864 4.2821 4.2544 4.2288 4.2281 4.2265 4.2226 4.2206 4.2146 4.2144 4.2114 4.1923 4.19 4.1894 4.1785 4.178 4.1694 4.1694 4.1694 4.1556 4.1498 4.1498 4.1357 4.1222 4.1222 4.1217 4.1192 4.1178 4.1139 4.1135 4.1125 4.1035 4.1025 4.1023 4.0971 4.0969 4.0915 4.0915 4.0914 4.0836 4.0804 4.0803 4.0722 4.065 4.065 4.0649 4.0644 4.0637 4.0616 4.0616 4.061 4.0572 4.0563 4.056 4.0545 4.0545 4.0522 4.0519 4.0514 4.0484 4.0467 4.0463 4.0422 4.0392 4.0388 4.0385 4.0385 4.0383 4.038 4.0379 4.0375 4.0364 4.0353 4.0344];
x_axis = 1:numel(curve);
points = [x_axis ; curve ]'; %' - SO formatting

%% Get the scaling info
f = figure(1);
plot(points(:,1),points(:,2));
ticks = get(get(f,'CurrentAxes'),'YTickLabel');
ticks = str2num(ticks);
aspect = get(get(f,'CurrentAxes'),'DataAspectRatio');
aspect = [aspect(2) aspect(1)];    
close(f);   

%% Get the "origin"
O = [x_axis(1) ticks(1)];

%% Scale the data - now the scaled values look like MATLAB''s idea of
% what a good plot should look like
scaled_O = O.*aspect;
scaled_points = bsxfun(@times,points,aspect);

%% Find the closest point
del = sum((bsxfun(@minus,scaled_points,scaled_O).^2),2);
[val ind] = min(del);
best_ROC = [ind curve(ind)];

%% Display
plot(x_axis,curve,'.-');
hold on;
plot(O(1),O(2),'r*');
plot(best_ROC(1),best_ROC(2),'k*');
结果: 对于
Fit(maximize)
曲线,您必须将原点更改为
[x_axis(1) ticks(end)]
。     
以下是Jonas在R中实现的解决方案:
elbow_finder <- function(x_values, y_values) {
  # Max values to create line
  max_x_x <- max(x_values)
  max_x_y <- y_values[which.max(x_values)]
  max_y_y <- max(y_values)
  max_y_x <- x_values[which.max(y_values)]
  max_df <- data.frame(x = c(max_y_x, max_x_x), y = c(max_y_y, max_x_y))

  # Creating straight line between the max values
  fit <- lm(max_df$y ~ max_df$x)

  # Distance from point to line
  distances <- c()
  for(i in 1:length(x_values)) {
    distances <- c(distances, abs(coef(fit)[2]*x_values[i] - y_values[i] + coef(fit)[1]) / sqrt(coef(fit)[2]^2 + 1^2))
  }

  # Max distance point
  x_max_dist <- x_values[which.max(distances)]
  y_max_dist <- y_values[which.max(distances)]

  return(c(x_max_dist, y_max_dist))
}
    
我们可以用简单直观的方式说出来 如果我们从曲线上的任意点到曲线的两个端点绘制两条线,则这两条线以度为单位的最小角度的点是所需的点。 在这里,两条线可以看作是手臂,点可以看作是肘点!     
双重派生方法。但是,对于嘈杂的数据,它似乎不太适用。对于输出,您只需找到d2的最大值来识别弯头。这个实现在R.
elbow_finder <- function(x_values, y_values) {
  i_max <- length(x_values) - 1

  # First and second derived
  first_derived <- list()
  second_derived <- list()

  # First derived
  for(i in 2:i_max){
    slope1 <- (y_values[i+1] - y_values[i]) / (x_values[i+1] - x_values[i])
    slope2 <- (y_values[i] - y_values[i-1]) / (x_values[i] - x_values[i-1])
    slope_avg <- (slope1 + slope2) / 2
    first_derived[[i]] <- slope_avg 
  }
  first_derived[[1]] <- NA
  first_derived[[i_max+1]] <- NA
  first_derived <- unlist(first_derived)

  # Second derived
  for(i in 3:i_max-1){
    d1 <- (first_derived[i+1] - first_derived[i]) / (x_values[i+1] - x_values[i])
    d2 <- (first_derived[i] - first_derived[i-1]) / (x_values[i] - x_values[i-1])
    d_avg <- (d1 + d2) / 2
    second_derived[[i]] <- d_avg 
  }
  second_derived[[1]] <- NA
  second_derived[[2]] <- NA
  second_derived[[i_max]] <- NA
  second_derived[[i_max+1]] <- NA
  second_derived <- unlist(second_derived)

  return(list(d1 = first_derived, d2 = second_derived))
}
    
我一直在研究膝关节/肘关节点检测。绝不是我是专家。 一些可能与此问题相关的方法。 DFDT代表动态第一导数阈值。它计算一阶导数并使用阈值算法来检测膝/肘点。 DSDT类似,但使用二阶导数,我的评价表明他们有相似的表现。 S方法是L方法的扩展。 L方法在曲线上插入两条直线,两条线之间的截距是拐点/肘点。通过循环整个点,拟合线并评估MSE(均方误差)来找到最佳拟合。 S方法适合3条直线,这提高了精度,但也需要更多的计算。 我的所有代码都在GitHub上公开发布。此外,本文可以帮助您找到有关该主题的更多信息。它只有四页长,所以应该很容易阅读。您可以使用代码,如果您想讨论任何方法,请随意这样做。     

要回复问题请先登录注册