从字符串/ boost :: any映射构建boost :: option

|| 我有一个代表配置的地图。这是
std::string
boost::any
的地图。 此映射在开始时已初始化,我希望用户能够在命令行上覆盖这些选项。 我想做的是使用
options_description::add_option()
方法从此地图构建程序选项。但是,它使用模板参数
po::value<>
,而我仅有的是
boost::any
。 到目前为止,我只有代码的外壳。
m_Config
代表我的配置类,
getTuples()
返回一个
std::map<std::string, Tuple>
TuplePair
std::pair<std::string, Tuple>
的typedef,元组包含我感兴趣的
boost::any
    po::options_description desc;
    std::for_each(m_Config.getTuples().begin(),
                  m_Config.getTuples().end(),
                  [&desc](const TuplePair& _pair)
    {
            // what goes here? :)
            // desc.add_options() ( _pair.first, po::value<???>, \"\");
    });
有没有办法以这种方式构建它,还是我需要自己动手做? 提前致谢!     
已邀请:
boost::any
不适用于您的问题。它执行类型擦除的最基本形式:存储和(类型安全)检索,仅此而已。如您所见,无法执行其他任何操作。正如jhasse指出的那样,您可以只测试要支持的每种类型,但这是维护的噩梦。 更好的是扩展“ 1”用法的想法。不幸的是,这需要一些样板代码。如果您想尝试一下,现在在邮件列表中正在讨论一个新的Boost库(标题为““ [boost] RFC:type erasure \”),它实际上是一种通用的类型擦除实用程序:您定义您希望擦除类型支持的操作,它会生成正确的实用程序类型。 (例如,可以通过要求已擦除的类型是可复制构造且类型安全的来模拟
boost::any
,并通过另外要求该类型可以被调用来模拟
boost::function<>
。) 但是除此之外,最好的选择可能是自己编写一个这样的类型。我会为您做的:
#include <boost/program_options.hpp>
#include <typeinfo>
#include <stdexcept>

namespace po = boost::program_options;

class any_option
{
public: 
    any_option() :
    mContent(0) // no content
    {}

    template <typename T>
    any_option(const T& value) :
    mContent(new holder<T>(value))
    {
        // above is where the erasure happens,
        // holder<T> inherits from our non-template
        // base class, which will make virtual calls
        // to the actual implementation; see below
    }

    any_option(const any_option& other) :
    mContent(other.empty() ? 0 : other.mContent->clone())
    {
        // note we need an explicit clone method to copy,
        // since with an erased type it\'s impossible
    }

    any_option& operator=(any_option other)
    {
        // copy-and-swap idiom is short and sweet
        swap(*this, other);

        return *this;
    }

    ~any_option()
    {
        // delete our content when we\'re done
        delete mContent;
    }

    bool empty() const
    {
        return !mContent;
    }

    friend void swap(any_option& first, any_option& second)
    {
        std::swap(first.mContent, second.mContent);
    }

    // now we define the interface we\'d like to support through erasure:

    // getting the data out if we know the type will be useful,
    // just like boost::any. (defined as friend free-function)
    template <typename T>
    friend T* any_option_cast(any_option*);

    // and the ability to query the type
    const std::type_info& type() const
    {
        return mContent->type(); // call actual function
    }

    // we also want to be able to call options_description::add_option(),
    // so we add a function that will do so (through a virtual call)
    void add_option(po::options_description desc, const char* name)
    {
        mContent->add_option(desc, name); // call actual function
    }

private:
    // done with the interface, now we define the non-template base class,
    // which has virtual functions where we need type-erased functionality
    class placeholder
    {
    public:
        virtual ~placeholder()
        {
            // allow deletion through base with virtual destructor
        }

        // the interface needed to support any_option operations:

        // need to be able to clone the stored value
        virtual placeholder* clone() const = 0;

        // need to be able to test the stored type, for safe casts
        virtual const std::type_info& type() const = 0;

        // and need to be able to perform add_option with type info
        virtual void add_option(po::options_description desc,
                                    const char* name) = 0;
    };

    // and the template derived class, which will support the interface
    template <typename T>
    class holder : public placeholder
    {
    public:
        holder(const T& value) :
        mValue(value)
        {}

        // implement the required interface:
        placeholder* clone() const
        {
            return new holder<T>(mValue);
        }

        const std::type_info& type() const
        {
            return typeid(mValue);
        }

        void add_option(po::options_description desc, const char* name)
        {
            desc.add_options()(name, po::value<T>(), \"\");
        }

        // finally, we have a direct value accessor
        T& value()
        {
            return mValue;
        }

    private:
        T mValue;

        // noncopyable, use cloning interface
        holder(const holder&);
        holder& operator=(const holder&);
    };

    // finally, we store a pointer to the base class
    placeholder* mContent;
};

class bad_any_option_cast :
    public std::bad_cast
{
public:
    const char* what() const throw()
    {
        return \"bad_any_option_cast: failed conversion\";
    }
};

template <typename T>
T* any_option_cast(any_option* anyOption)
{
    typedef any_option::holder<T> holder;

    return anyOption.type() == typeid(T) ? 
            &static_cast<holder*>(anyOption.mContent)->value() : 0; 
}

template <typename T>
const T* any_option_cast(const any_option* anyOption)
{
    // none of the operations in non-const any_option_cast
    // are mutating, so this is safe and simple (constness
    // is restored to the return value automatically)
    return any_option_cast<T>(const_cast<any_option*>(anyOption));
}

template <typename T>
T& any_option_cast(any_option& anyOption)
{
    T* result = any_option_cast(&anyOption);
    if (!result)
        throw bad_any_option_cast();

    return *result;
}

template <typename T>
const T& any_option_cast(const any_option& anyOption)
{
    return any_option_cast<T>(const_cast<any_option&>(anyOption));
}

// NOTE: My casting operator has slightly different use than
// that of boost::any. Namely, it automatically returns a reference
// to the stored value, so you don\'t need to (and cannot) specify it.
// If you liked the old way, feel free to peek into their source.

#include <boost/foreach.hpp>
#include <map>

int main()
{
    // (it\'s a good exercise to step through this with
    //  a debugger to see how it all comes together)
    typedef std::map<std::string, any_option> map_type;
    typedef map_type::value_type pair_type;

    map_type m;

    m.insert(std::make_pair(\"int\", any_option(5)));
    m.insert(std::make_pair(\"double\", any_option(3.14)));

    po::options_description desc;

    BOOST_FOREACH(pair_type& pair, m)
    {
        pair.second.add_option(desc, pair.first.c_str());
    }

    // etc.
}
让我知道是否有不清楚的地方。 :)     
template<class T>
bool any_is(const boost::any& a)
{
    try
    {
        boost::any_cast<const T&>(a);
        return true;
    }
    catch(boost::bad_any_cast&)
    {
        return false;
    }
}

// ...

    po::options_description desc;
    std::for_each(m_Config.getTuples().begin(),
                  m_Config.getTuples().end(),
                  [&desc](const TuplePair& _pair)
    {
        if(any_is<int>(_pair.first))
        {
            desc.add_options() { _pair.first, po::value<int>, \"\"};
        }
        else if(any_is<std::string>(_pair.first))
        {
            desc.add_options() { _pair.first, po::value<std::string>, \"\"};
        }
        else
        {
            // ...
        }
    });

// ...
如果类型不只一种,请考虑使用类型列表。     

要回复问题请先登录注册