首次进入线程如何向同一方法结束的其他并发线程发信号?

首次进入线程如何向同一方法结束的其他并发线程发信号? 我有一个名为PollDPRAM()的方法。它必须通过网络到一些慢速硬件和刷新对象私有数据。如果其他线程同时调用相同的方法,则它们不能执行该行程,而是等待第一个到来的线程完成作业并退出,因为数据是新鲜的(比如说10-30毫秒之前没有区别) 。 它很容易在方法中检测到第二个,第三个等线程没有首先输入。我使用Interlocked计数器来检测并发性。 问题:我通过观察计数器(Interlocked.Read)来检测第一个线程的退出是一个糟糕的选择,在计数器减少到小于在n> 1个线程的入口处检测到的值之后观察。选择很糟糕,因为第一个线程可以在离开后几乎立即重新进入该方法。所以n> 1个线程永远不会检测到计数器中的下降。 所以问题: 如何正确检测第一个进入的线程已退出该方法,即使该第一个线程可以立即再次输入? 谢谢 附:一段代码
        private void pollMotorsData()
    {
        // Execute single poll with "foreground" handshaking 
        DateTime start = DateTime.Now;
        byte retryCount = 0;
        // Pick old data atomically to detect change
        uint motorsDataTimeStampPrev = this.MotorsDataTimeStamp;
        bool changeDetected = false;
        // The design goal of DPRAM is to ease the bottleneck
        // Here is a sensor if bottleneck is actually that tight
        long parallelThreads = Interlocked.Increment(ref this.motorsPollThreadCount);
        try
        {
            // For first thread entering the counter will be 1
            if (parallelThreads <= 1)
            {
                do
                {
                    // Handshake signal to DPRAM write process on controller side that host PC is reading
                    this.controller.deltaTauTcpClient.Pmac_SetBit(OFFSET_0x006A_BIT15_FOREGROUND_READ, 15, true);
                    try
                    {
                        bool canReadMotors = false;
                        byte[] canReadFrozenDataFlag = new byte[2];
                        do
                        {
                            this.controller.deltaTauTcpClient.Pmac_GetMem(OFFSET_0x006E_BIT15_FOREGROUND_DONE, canReadFrozenDataFlag);
                            canReadMotors = (canReadFrozenDataFlag[1] & 0x80) == 0x80;
                            if (canReadMotors) break;
                            retryCount++;
                            Thread.Sleep(1);
                        } while (retryCount < 10);
                        if (!canReadMotors)
                        {
                            throw new DeltaTauControllerException(this.controller, "Timeout waiting on DPRAM Foreground Handshaking Bit");
                        }
                        // The lock is meaningless in contructor as it is certainly single threaded
                        // but for practice sake the access to data should always be serialized
                        lock (motorsDataLock)
                        {
                            // Obtain fresh content of DPRAM
                            this.controller.deltaTauTcpClient.Pmac_GetMem(OFFSET_0x006A_394BYTES_8MOTORS_DATA, this.motorsData);
                            this.motorsDataBorn = DateTime.Now;
                        }
                    }
                    finally
                    {
                        // Handshake signal to DPRAM write process on controller side that host PC has finished reading
                        this.controller.deltaTauTcpClient.Pmac_SetBit(OFFSET_0x006A_BIT15_FOREGROUND_READ, 15, false);
                    }
                    // Check live change in a separate atom
                    changeDetected = this.MotorsDataTimeStamp != motorsDataTimeStampPrev;
                } while ((!changeDetected) && ((DateTime.Now - start).TotalMilliseconds < 255));
                // Assert that result is live
                if (!changeDetected)
                {
                    throw new DeltaTauControllerException(this.controller, "DPRAM Background Data timestamp is not updated. DPRAM forground handshaking failed.");
                }
            }
            else
            {
                // OK. Bottleneck ! The concurrent polls have collided 
                // Give the controller a breathe by waiting for other thread do the job
                // Avoid aggressive polling of stale data, which is not able to be written, locked by reader
                // Just wait for other thread do whole polling job and return with no action
                // because the data is milliseconds fresh
                do
                {
                    // Amount of parallel threads must eventually decrease
                    // But no thread will leave and decrease the counter until job is done
                    if (Interlocked.Read(ref this.motorsPollThreadCount) < parallelThreads)
                    {
                        // Return is possible because decreased value of concurrentThreads means that
                        // this very time other thread has finished the poll 1 millisecond ago at most
                        return;
                    }
                    Thread.Sleep(1);
                    retryCount++;
                } while ((DateTime.Now - start).TotalMilliseconds < 255);
                throw new DeltaTauControllerException(this.controller, "Timeout 255ms waiting on concurrent thread to complete DPRAM polling");
            }
        }
        finally
        {
            // Signal to other threads that work is done
            Interlocked.Decrement(ref this.motorsPollThreadCount);
            // Trace the timing and bottleneck situations
            TimeSpan duration = DateTime.Now - start;
            if (duration.TotalMilliseconds > 50 || parallelThreads > 1 || retryCount > 0)
            {
                Trace.WriteLine(string.Format("Controller {0}, DPRAM poll {1:0} ms, threads {2}, retries {3}",
                    this.controller.number,
                    duration.TotalMilliseconds,
                    parallelThreads,
                    retryCount));
            }
        }
    }
    
已邀请:
有很多不同的方法可以做到这一点。你可以使用一个关键部分,正如有人已经提到的那样,但如果另一个线程阻塞,那么就不会给你“退出”的行为。为此你需要某种旗帜。您可以使用易变的bool并锁定该bool的访问权限,或者您可以使用单个计数的信号量。最后,您可以使用互斥锁。使用同步对象的好处是你可以做一个WaitForSingleObject并将超时设置为0.然后你可以检查等待是否成功(如果它是第一个线程已经退出)或者不是(在这种情况下第一个线程是仍在运行)。     
同步方法和方法内部检查上次进行网络访问的时间记录,以确定是否需要再次执行。     
您可以使用“lock”关键字支持的C#监视器类。 基本上你的方法可以用lock(lockobj)包装{CallMethod()} 假设所有线程都在同一个进程中,这将为您提供保护。 如果需要锁定进程,则需要使用Mutex。 至于你的程序,我会考虑将静态时间戳和缓存值放入你的方法中。因此,当方法进入时,如果时间戳在我可接受的范围内,则返回缓存的值,否则只需执行获取。结合锁定机制,这应该做你需要的。 当然,这假设在C#监视器上占用和阻止的时间不会影响应用程序的性能。 更新: 我已经更新了您的代码,以向您展示我对使用缓存和时间戳的意义。我假设你的“motorsData”变量是从电机轮询返回的东西,因此我没有变量。但是如果我误解了,只需添加一个变量来存储从代码中返回的数据。注意我没有为你做任何错误检查,所以你需要处理你的异常。
    static DateTime lastMotorPoll;
    const TimeSpan CACHE_PERIOD = new TimeSpan(0, 0, 0, 0, 250);
    private object cachedCheckMotorsDataLock = new object();

    private void CachedCheckMotorsData()
    {
        lock (cachedCheckMotorsDataLock)  //Could refactor this to perform a try enter which returns quickly if required
        {
            //If the last time the data was polled is older than the cache period, poll
            if (lastMotorPoll.Add(CACHE_PERIOD) < DateTime.Now)
            {
                pollMotorsData();
                lastMotorPoll = DateTime.Now;
            }
            else //Data is fresh so don't poll
            {
                return;
            }
        }       
    }

    private void pollMotorsData()
    {
        // Execute single poll with "foreground" handshaking 
        DateTime start = DateTime.Now;
        byte retryCount = 0;
        // Pick old data atomically to detect change
        uint motorsDataTimeStampPrev = this.MotorsDataTimeStamp;
        bool changeDetected = false;
        try
        {
            do
            {
                // Handshake signal to DPRAM write process on controller side that host PC is reading
                this.controller.deltaTauTcpClient.Pmac_SetBit(OFFSET_0x006A_BIT15_FOREGROUND_READ, 15, true);
                try
                {
                    bool canReadMotors = false;
                    byte[] canReadFrozenDataFlag = new byte[2];
                    do
                    {
                        this.controller.deltaTauTcpClient.Pmac_GetMem(OFFSET_0x006E_BIT15_FOREGROUND_DONE, canReadFrozenDataFlag);
                        canReadMotors = (canReadFrozenDataFlag[1] & 0x80) == 0x80;
                        if (canReadMotors) break;
                        retryCount++;
                        Thread.Sleep(1);
                    } while (retryCount < 10);
                    if (!canReadMotors)
                    {
                        throw new DeltaTauControllerException(this.controller, "Timeout waiting on DPRAM Foreground Handshaking Bit");
                    }
                    // Obtain fresh content of DPRAM
                    this.controller.deltaTauTcpClient.Pmac_GetMem(OFFSET_0x006A_394BYTES_8MOTORS_DATA, this.motorsData);
                    this.motorsDataBorn = DateTime.Now;
                }
                finally
                {
                    // Handshake signal to DPRAM write process on controller side that host PC has finished reading
                    this.controller.deltaTauTcpClient.Pmac_SetBit(OFFSET_0x006A_BIT15_FOREGROUND_READ, 15, false);
                }
                // Check live change in a separate atom
                changeDetected = this.MotorsDataTimeStamp != motorsDataTimeStampPrev;
            } while ((!changeDetected) && ((DateTime.Now - start).TotalMilliseconds < 255));

            // Assert that result is live
            if (!changeDetected)
            {
                throw new DeltaTauControllerException(this.controller, "DPRAM Background Data timestamp is not updated. DPRAM forground handshaking failed.");
            }
        }
    }
    

要回复问题请先登录注册